
A Generic Static Analysis Framework for
Domain-specific Languages

Avijit Mandal, Devina Mohan, Raoul Jetley
ABB Corporate Research

Bangalore, India
{avijit.mandal, devina.mohan, raoul.jetley}@in.abb.com

Sreeja Nair†
ABB Corporate Research

Bangalore, India
sreeja.in@gmail.com

Meenakshi D’Souza
IIIT Bangalore

Bangalore, India
meenakshi@iiitb.ac.in

Abstract—Software used to monitor and control operations
within an automation system is defined using domain-specific
languages. Latent errors in the control code, if left undetected,
can lead to unexpected system failures compromising the safety
and the security of the automation system. Traditional analysis
techniques are insufficient to detect such errors as they do not
cater specifically to the underlying domain-specific language.
However, given the diversity of different automation domains,
there is no standard platform for analysis of these languages.
This paper proposes a generic static analysis framework for
domain-specific languages used in the automation domain. The
analysis approach exhaustively detects runtime errors in control
code and ensures compliance to good programming practices.
These runtime errors and coding violations are checked against
abstract syntax trees and control flow graphs derived from the
code. Data Flow Analysis (DFA), Abstract interpretation and
pattern-based matching techniques are used to identify domain
specific errors and coding violations for control languages.

Index Terms—Static analysis, Data Flow Analysis (DFA),
Abstract Interpretation, Generic programming errors, Safety
requirements, Interrupt, Exception, Inter-procedural CFG.

I. INTRODUCTION

Automation engineering systems rely on software to mon-
itor and control various operations like batch processing, arc
welding etc. This software, however, is prone to errors that
may creep in during development. Such errors, if left unde-
tected, can manifest themselves as failures or be exploited by
malicious intruders. Moreover, fixing such errors at later stages
of development or after deployment entails high maintenance
cost and requires extra effort.

Automation systems are implemented using domain-specific
languages for monitoring and control. Due to the use of com-
plex data structures, task-based parallel execution and unique
semantics for execution order, analysis techniques for general-
purpose programming languages are not always adequate for
these systems. Thus, we need specialized tools and techniques
that address the domain-specific languages. One solution to
detect errors in automation systems is to use static code
analysis to identify potential sources of errors during compile

†Sreeja Nair is currently at Sorbonne Université, CNRS, Laboratoire
d’Informatique de Paris 6, LIP6, F-75005 Paris, France

time. The technique involves examining all possible execution
paths in the source code. Static code analysis for general-
purpose programming languages is widespread across the
software industry. Many static analyzers are widely adopted,
e.g., Coverity for C, PolySpace for C/C++/Ada etc. However,
such tools are rarely used for automation systems. Typically,
verifications tools for control software focus on pattern based
matching to detect code violations. Such tools are platform
dependent and do not port well across various developing
environments.

The work presented in this paper proposes a generic static
analysis framework for industrial software. The framework can
be used to efficiently perform DFA and pattern-matching based
checks on industrial software. The framework can be extended
to various programming languages addressing different indus-
trial domains. The main objective is to build a verification
platform to ensure correctness of safety-critical software. This
paper focuses on the adaptation of the proposed framework to
real-world control applications. To this effect, the framework
has been extended for analysis of the following languages:

• IEC 61131-3 languages for PLC programming [5]
• Electronic Device Description Language (EDDL), used

for configuration of field devices [7], and
• RAPID, a domain-specific language used for program-

ming industrial robots [6]

Key contributions in this paper are,

• Generic datatype to represent the parsed information for
the three languages

• Flexible DFA engine to encode more data flow rules as
needed by varying the domain

• Flexible rule engine to process data for further analysis

The rest of the paper is structured as follows: Section
II explores existing related work. Section III introduces the
basic concepts involved. Section IV explains the framework
of the prototype. Section V discusses the implementation and
extensions for domain-specific languages. Section VI presents
analyses of real-world applications and results thereof. Finally,
Section VII summarizes the paper and lists future directions.

978-1-5386-7108-5/18/$31.00 ©2018 IEEE 27

